
Int. Y. Mtdt~oha.te Flow Vol. 6, pp. 241-248 0301-9322~0/0601-0241/$02.00/0 
© Pergamon/Elsevier, I~0. Printed in Great Britain 

S E P A R A T E D  F L O W  M O D E L S - - I I  

HIGHER ORDER DISPERSION EFFECTS IN THE 
AVERAGED FORMULATION 

S. BANEIUEE 

Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M 1 

(Received 6 ]u/y 1979; in revised form 29 October 1979) 

Abstract--In a previous paper (Part I), it was shown that the averaged formulation for stratified flow did not 
appear to contain the higher order dispersion terms that were obtained on analysing the local instantaneous 
two-dimensional formulation. In this paper, this apparent inconsistency is resolved by more careful 
modelling of the difference between the phase average and interracial pressures. The resulting set of 
averaged conservation equations are shown to have the correct linear dispersion relationship for long 
waves, Asymptotic analysis of these averaged equations by the method of reductive perturbation also leads 
to description of finite amplitude waves by a Koretweg-de Vries equation that is identical to that obtained 
previously from the local instantaneous formulation. 

I. INTRODUCTION 
In many two-phase flow problems, averaged values of parameters, like void fraction, are of 
engineering interest. Therefore, one of the main approaches to two-phase flow modelling has 
been to use averaged versions of the local instantaneous conservation equations. Separate sets 
of averaged conservation equations are usually derived for each phase, or the relatively 
homogeneous portions of each phase, and these are then coupled by interfacial transfer 
relationships and jump conditions. "Mnltifluid" models of this type have been discussed by 
several investigations (e.g. Saito 1977, Delhaye & Achard 1976, Wallis 1976). 

While averaged models are of considerable practical importance, it is clear that information 
is lost in the averaging process and must be supplied in the form of essentially empirical 
auxiliary relationships. To investigate some of the effects of averaging, Part I of this paper 
(Banerjee & Chan 1979) considered wave propagation and dispersion in stratified flow using 
both the averaged and local instantaneous formulations. It was found that the local in- 
stantaneous conservations equations led to a description of finite amplitude waves by the 
non-linear Korteweg-de Vries equations (Jeffrey & Kakutani 1972) which have third derivative 
dispersion terms. The averaged model, however, led to purely hyperbolic waves for the same 
physical situation. It is known (Jeffrey 1967) that even with the analytic initial data, solutions of 
hyperbolic equations will steepen in time and eventually become multivalued. On the other 
hand, if higher order derivative terms are present, albeit with very small coefficients, then these 
eventually, balance the nonlinear steepening and can, in some situations, lead to waves of 
permanent shape (solitary waves). Analysis of systems containing higher order dispersive terms 
reveal a richness of phenomena, such as the remarkable results regarding the interaction of 
solitons (Whitham 1974) that is by no means possible for purely hyperbolic waves. 

For these reasons, it was considered worthwhile to re-examine the averaged formulation to 
determine whether more careful modelling could lead to results regarding wave phenomena 
consistent with those from the local instantaneous equations. In order to use some of the 
derivations from Part I, the analysis was initially done for stratified two-phase in horizontal 
ducts. 
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2. AVERAGED CONSERVATION EQUATIONS FOR STRATIFIED FLOW 

Consider the stratified flow of two incompressible fluids in a horizontal duct of height H as 
shown in figure 1. To compare the results with those obtained in Part I, we will assume inviscid 
flow with no interphase mass transfer. The averaged conservation equations are (see Part I): 

M a s s  

M o m e n t u m  

Oak ~- U k - ~  + Ol k OUk = 0 
at oz " [I] 

/ a u k +  ou,~ + ~k ~__z~ _ (p _ (pk~) aa_~zk = o ' akPk ~ -  Uk OZ / [2] 

Where a, u, p and p are phase volume fraction, axial velocity, density and pressure respec- 

tively. The subscript k refers to the phase (liquid or gas) and the subscript i to the interface. 
The time coordinate is t and the coordinate in the flow direction is z. We have written 

uk =(Uk)k =ak(Uk)/ak, 

and 

The averaging signs have been eliminated from [1] and [2] for all terms except (Pk) (which is 
kept to avoid confusion later on). 

In the previous paper (Part I), the difference between the interface and phase average 
pressures was taken to be 

p~ - ( p e )  = PsgaH [311 
2 ' 

and 

ptg(1 - a ) H  
P, - (Pt) - 2 ' 141 

where g is the gravitational constant and H is the duct height. 
This was a static approximation, because the general case would involve derivatives of the 

cross stream velocity. To improve the model given by [1]-[4], it is necessary to consider the 
transverse momentum equation for each phase, which is 

0y 
[0vk ark] + o~ ,  

-- 0p__..kk = Pk 1_ Ot + Uk 3Z -I 
[5] 

where ok is the cross stream velocity of phase k and y is the cross stream direction. 
The cross stream velocity derivative is neglected, and inviscid flow with no mass transfer is 

assumed. 
To find the average phasic pressure (Pk), [5] must be integrated with respect to y. This is 

straightforward if the term in parenthesis on the r.h.s, is not considered, when the average 
phasic pressures are given by [3] and [4]. However, if the dynamic terms are retained then their 
functional dependence on y must be found. To do this rigorously, the full two-dimensional 
equations must be solved. 
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However, in this paper we will make approximations that will simplify the problem 
considerably, but are expected to appty reasonably well to long waves only. Let 

" fav _ avk] [6] 
" h uk 

Then we have the boundary conditions 

~k=~ki at y = Y ,  

~ g = ~ y = 0  at y = H ,  

~:t=-~t=0 at y = 0 .  [7] 
, . , j  

The derivations vanish at the walls because OVk/Üy = 0 from continuity considerations. The 
simplest polynomial function of y that will fit these boundary conditions is a quadratic. Clearly 
this is a poor approximation for short waves when points of inflection may occur; however, it is 
probably reasonable for long waves. Integrating [5] with a quadratic in y for ~k and substituting 
the boundary conditions [7] we obtain 

(pg)- pi = - [P~2 H + ~ (;giaH ] , [8] 

(p,)_p,  = [o ,g ( l - c t )H  . l a ) H ] .  
2 -r ~ ~. (1 - [9] 

Note the additional terms that have appeared in comparison with [3] and [4]. To proceed we 
use the kinematic condition 

_ O Y  +u o r  [10] 
v~i - at g ~ '  

where Y is the interface position. 
It follows from [10] that 

and similarly 

Hr 0 + 0 ]2 [11] 

~:t~ = -ptH[(~t + 0 2 [12] 

We may now substitute [8]~ [9], [11] and [12] into the phasic momentum equations [2] to 
obtain the momentum equations 

and 

ra_ u 

Ou~ " Ou~ ( l _ a ) p , [ . ~ + u t _ ~ ] + ( l _ a )  Oo~_p,g(l , ,  Oa 1 - aj  n - ~ - ~  pt(l - a)2H 2 

0 ~ 

[13] 

[141 
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In obtaining these equations we have neglected terms of the type ~k~(Oa[OZ) since they enter 
neither in the linear dispersion analysis presented in the next section, nor in the subsequent 
reductive perturbation analysis, to the order considered, for finite amplitude waves. The phasic 
momentum equations [13] and [14] are the same as obtained previously in Part I, except for the 
last term on the l.h.s, of each equation. 

3. LINEAR DISPERSION ANALYSIS 

If /J is the vector of dependent variables u~, u~, Pi and a, consider a perturbation of the form 
/J exp [i(kz  - tot)]. When the conservation equations [1], [13] and [14] are perturbed in this way, 

we obtain 

~p~[ug - ~ ]  

( 1 - a ) [ u t - A ]  l - a  

-(1 - a ) p l  

a p g  

- pggaH 
Ol U~ 

1 +-~ a 2 pgH2(to - ugk ) 2 

- p i g ( 1  - a ) H  

+ u~ = 0, 
~(1 - ot )2plH2(to - ulk  ) 2 

pt[ut - ;~] a [15] 

where the equations have been divided by ik and to/k = A. 
For a non-trivial solution, the determinant of the matrix must vanish, leading to the 

dispersion relationship 

a p d A - u ~ ) 2 [ 1 4  ( 1 - a ~ 2 k 2 H 2 J + ( 1 - a ) p ~ ( A - u g ) 2 [ 1  - + - - - - - ~ j  a 2k2H2] 

- a(l  - c~)gH(pl - Pe) = O, [16] 

This dispersion relationship is similar to that obtained in Part I, except that additional terms 

involving k 2 now appear. 
To determine whether [16] is correct, a comparison with the form in Milne-Thomson (1960) 

based on analysis of the two-dimensional local instantaneous equations is necessary. Milne- 
Thomson derives the dispersion relationship for the stratified flow of two incompressible 

inviscid fluids as 

pg ( to - u~k ) 2 coth ( kh ) + Pt ( to - utk ) 2 coth [ k ( H - h)] - kg (pr - p~) = O. [171 

The symbols are defined in figure 1. 
N o w  

a 
coth (a) = +-~+" • • • [t8] 

For small values of a, retaining the first two terms is sufficient. Therefore [17] simplifies to 

to 2 Fto 12r- k:( H -  h) 2] Pg [~--  u,] [1 k:h2]  
t 3 h 

[191 

Noting that ( h / H )  = a and ( H  - h ) l H  = 1 - a, we obtain a form identical to [16]. This suggests 
that the linear dispersion analysis obtained from the averaged conservation equations is correct 
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.. ~ . . . . .  watt 

h ~ v~,u~,P~ 
_ ~ ~ ~ ~interface Y(t,x} 

vl,urPl 
wat t  

Figure 1. Definition of symbols and geometry for analysis of stratified flow. 

for long waves, i.e. small values of kh and k ( H  - h). This restriction is to be expected because 
of the approximations made in modelling the difference between the phase average and 
interracial pressure. 

The interesting conclusion from the linear dispersion relationship [16] is that the system of 
conservation equations [1], [13] and [14] do not lead to purely hyperbolic waves, but now lead 
to a dispersive system even in the absence of frictional, surface tension and mass transfer 
effects. 

It is clear that the dispersion relationship [16] can be expanded in the form 

to = dk + bk 3 + . "  [20] 

where ti and/; are real constants, which suggests that the weak nonlinearity may be considered 
by applying the reductive perturbation method as applied to hydromagnetic waves in a collision 
free plasma by Kakutani et al. (1968). The results of such an analysis are presented in the next 
section. 

4. A S Y M P T O T I C  A N A L Y S I S  FOR F I N I T E  A M P L I T U D E  W A V E S  

Linear dispersion relationships of the type in [20] will often lead to the Korteweg--deVr/es 
equation for small, but finite amplitude, long waves. This is not always true, as shown by 
Kakutani & Ono (1969) for the example of Alfven waves which are described by a modified 
Korteweg--deVries equation. 

In investigating finite amplitude waves we will use the procedure of semicharacteristic 
coordinate stretching and asymptotic expansions for the dependent variables suggested by 
Gardner & Morikawa (1960). The asymptotic solution does not, o f  course; contain all the 
properties of the original problem, but this is usually more than compensated for by the insight 
gained from the properties of the results obtained. Consider expansions of the dependent 
variables of the form 

It k = ilk (°) + eUk (l) + e2//k (2) + • . .  

p~ = p(O) + ~pi(i) + ~2p (2) + . . .  

Ol = O/(0) + ff~(l) -F ~2~(2) -F • • • .  [21] 

The small parameter ~ = 0(k 2) measures the weakness of dispersion. 
We will use the semicharacteristic stretching transformation (Gardner & Morikawa 1960) 

r=,312t and s e=em(x/Vo- t ) ,  [22] 

where I/0 is the phase velocity equivalent to d in the dispersion relationship [20] and ~ is a small 
parameter of the order of the amplitude of the disturbances. 

We will also assume that the flow is in a uniform state upstream at infinity, and therefore have 
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the boundary conditions 

forj=1,2,.... 

u)j)+o 

p) -+ 0 as .$-+--So 

.(jj+o 1231 

When the expansions from [21] are substituted into the conservation equations [ 11, [ 131 and [ 141, 
and the coordinate transformation [22] is applied we obtain: 

for .f3’* 

and 

%2!+_L__=o, 
1 Jp!” gH a& 

a6 PgVo at vo at 

_+LT!?C!_tiaa"'_(), au/') 
at pfvo at v. at 

WI 

PI 

]271 

for e5’* 

[281 

WI 

[301 

au(l) ,/I) au(l) 
=_I--.1 

a7 v. at 

[311 

The differential equations [24]-[27] may be integrated and the boundary conditions [23] applied 
to yield 

#I _ Q(O) U 11) 
VO R ' 

~321 

(0’ 
Ul ( > -- 

vo 

] a(l) - 1 -JO’ &w 
vo ' 

( > !!2_l /p+Lp~lLgH 

vo PgVo 
a(') = 0 

VII ' 

( > $_ 1 u/l)+Lpp~a"'=O. 

PIVO 0 

I331 

1341 

]351 

The quantities superscripted with 1 may be eliminated to give an equation for the phase velocity 

Vo 
(u;” - V,)*p,( 1 - a(‘)) + gHcr”‘( 1 - d’))(p, - p[) + pp’O’(u,‘O’ - V,)’ = 0. I361 
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This is identical to the relationship obtained in Part I by a linear dispersi6n: analysis; of the 
conservation equations. The phase velocity Vo may be obtained by solving [36] as 

~i ^.(o)).. (o)~ ± ~(o)..(o)~ Pt l j/2 
,. ,.-u., ..~.., .,+[ -(u, '° ' -u ,(° , )  ' +(p,_p.)gHl'"xf (o__~,+~j J [ 
• o = a(°)p l  + (1 - a (°))pc - [ a (O)/p~ + (1 - a (°))/pt 

[371 

and is wholly real when 

['Ot(o) _ or(O) 1 
(p, - p , )gH [-'~-g + 1 P, J >I (u, - u,) 2. [381 

If the variables superscripted (2) in [28]-[31] are eliminated using [32]--[34], then we obtain an 
expression of the form 

~3a") B a , )  Oa! u+ Oa") Oot(2) 
A - - ~ -  + ,9~ C --~--r + D --~- = 0" [391 

Now 

D = pta[Ul - Vo] 2 + p~(l-  t~(°))[ug (°)- VO] 2 + gHa(°)(l - a°)(pg - Pl) = 0 

from [36]. Therefore, we obtain the Korteweg-deVries equation: 

where 

(~30~(1) ~(I) ~ ( I )  n (l)"t~ + ~ u t .  _ 
A - ~ - -  + n a  - - ~  t. --~--r - O, 

/ 
A = - ~ [psot(°)H2(u :°) - Vo) 2 + ps(l - ot(°))n2(u/- Vo)2], 

3 [p~(u~. vo) 2 pt(u/°)- vo) 2] 
B = ~ L  a ~°)2 - (l-a~°)) 2 J' 

[p~(u: ) -  Vo) p~(u~ (°)- Vo)] 
c = -2  t : '  H---7°~ J" 

[40] 

Note that this is identical to the Korteweg--deVries equation obtained in Part I for incompressible, 
inviscid stratified flow by an analysis of the local instantaneous two-dimensional conservation 
equations and boundary conditions. Similar equations are obtained for uk ") and pi O) as is evident 
from [32] to [35]. 

5. C O N C L U S I O N S  

The averaged conservation equations for stratified two=phase flow in a duct have been 

shown to involve higher order derivatives of the void fraction when the difference between the, 
phase average and interracial pressures are modelled with the help of the transverse momentum 
equation. An exact solution for the pressure difference cannot be obtained with the averaged 
equations, so the simplest possible model that satisfies the boundary conditions and kinematic 
conditions at the interface has been used. It is shown that this results in a linear dispersion 
relationship that is identical to the one for long waves obtained by analysing the local 
instantaneous equations. Furthermore, finite amplitude waves are found to be described by the 
identical Korteweg-deVries equation as obtained in Part I using the local instantaneous 
formulation. This enhances confidence in the approximations made in modelling the interracial 
phase average pressure difference in the averaged equations. We conclude that: 

."0 To properly model propagation, dispersion and damping of waves in separatet~.two-pimSe 
flow, it is necessary to consider higher order derivative terms in the phasic conservation > 
equations. 
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• These higher order derivative terms, at least in the case considered, arise naturally when 
the interfacial and phase average pressures are better modelled than done previously in Part I. 

• The transverse momentum conservation equation should be considered in modelling the 
pressures; simple approximations appear adequate provided they satisfy the boundary and 
kinematic conditions for the transverse velocity. 

• The physical reason that the higher order dispersive terms arise is related to the fact that 
the shape and motion of the interface are part of the problem being solved and cannot be 
specified arbitrarily; therefore, the kinematic condition at the interface must be satisfied. 

It is expected that higher order dispersive terms of the type obtained in this paper will also 
be important in the study of waves in other two-phase flow regimes. The next step, however, 
would be to incorporate dissipation in the analysis and determine whether it occurs as a higher 
derivative term or as an algebraic term. Though this is speculation at this stage, a good model 
equation for wave phenomena in two-phase flow may be of the form of the Korteweg-deVries 
Burges equation derived by Johnson (1969) for blood flow through elastic tubes. 
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